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deformations. 

The author is grateful to V.L. Berdichevskii for discussing the results. 
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DYNAMIC DEFORMATION OF INCOMPRESSIBLE MEDIA* 

M.A. ZADOYAN 

A class of plane and axisymmetric problems concerning incompressible media 

with power law hardening, deformed over time according to special laws, 

is considered. Such media include, in fact, hardening plastic, non-linearly 

elastic and non-linearly viscous bodies whose compressibility can be 
neglected. The dynamic effects are studied under which the points of the 

body execute oscillatory or monotonic motions with respect to time. The 

external forces corresponding to dynamic deformation of the media in 
question are given. Problems of unloading are omitted for brevity; only 
the stages of the motion leading to loading will be considered. 

Wave processes in plastic and other non-linear compressible bodies 
have been investigated in many papers (/l-8/ et al.). The problems of 

dynamic deformation under the assumption that the material is incompressible 

merits special attention, especially from the point of view of determining 

how the inertial forces affect the strength of the bodies. 

1. Plane deformation, The relations for the medium in question under the conditions 
of plane deformation are given in polar coordinates and in the usual notation in the form of: 

the equations of motion 

the relation connecting the deformation and stress intensities, and the relations 

connecting the deformation, stress and displalement components 

E0 = ka,” (1.2) 

Fo = l& - &$ + 4&j, (To = f lqq - IQ)* + 4&l 

*Prikl.I&tem.lfekhan.,50,5,786-795,1986 
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We will seek the stresses and displacements in the form (a prime denotes a differentiation 
with respect to 0,and a dot denotes differentiation with respect to time 

Here f,M, N,W are arbitrary functions of t,ll, is an arbitrary function of %,,and p and h 
are constants. Here and henceforth the parameters h and n are independent when p = 0, and 
we have h = 2ni(12 - I) when p #%. 

The expressions for the stresses and displacements 11.3) given above will represent a 
solution of the system of Eqs.(l.l), (1.21, provided that Zp(%) satisfies the following 
fourth-degree equation: 

([$" - h (h - 2) jdxy + hn-’ (2 - An-‘) [I/l” - h (h - 2)qJX + (1.4) 
4 (h - 1) (hn-’ - 1) ($‘x) + hvn-’ (h - 2)-l [Iy + 

(h - 2)2qIl = 0 

and j(t) the second-degree equation 

f"+-]l"p'n zo 

whose solution is given, when p#O, in quadratures by 

(1.5) 

(1.I;) 

where fo, e, p are parameters characterizing the dynamic deformation. The minus sign in the 
radicand corresponds tothenon-linear oscillation of the body (rz = 1 indicates an harmonic 
oscillation), and the plus sign corresponds to a deformation monotonic in time. 

When 7L = 0, the system (l.l)-(1.2) has the solutions 

c,, CT~ = (pr2h” & dW) CDS 2 (6 - 6) - pM”r sin 8 + (1.7) 

pN”r cos 0 -+ Ii, rre = - xhlTnsin 2 (0 - 6) 

u = ‘/,xkhr cos 2 (0 - 6) - M sin 0 -I- N cos 0 

u = --Ijzxkhr sin 2 (% - 6) - M cos 0 -N sin 0 

where h = h(t) are arbitrary functions and 6 is a parameter. 

The case n = 2. When n = 2 , we take the formulas for the stresses and displacements 
(1.3) in the form 

where q(e) is given by the equation 

](I$' - 89) r.1” + 12 (zi)‘x)’ + Y (9” i-_ 411‘) = 0 (1.9) 

and the function f(t) is found from the quadrature (1.6) for m = "i '2' The graph of this 
function for f. = 0 is given in Fig.1, the solid and dashed lines corresponding to c = 10 and 
C = 15 respectively. 

lo. Let us consider an infinite wedge with angle :! CL, bent by the bendinq moment &f(t) 
applied to the vertex. Eq.Cl.9) can be reduced to a system of first-order differential 

equations with boundary conditions 
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u’ = -4v$, T’ = o - YS - 12fZ%/R 
R = I? + (T’ + 144s2)‘/~l”t 
e=o,o=,~=0;8_a,o=~=o 

In order to establish the relations connecting M(t) with f (t), we shall consider the 

conditions of equilibrium of a sector of arbitrary radius r, with the centre at the vertex 

(Fig.2), which we imagine to be separated from the wedge. Equating to zero the sum of the 

moments of forces acting on this wedge-like body relative to the vertex, we have (&I = M (t)) 

Fig.1 Fig.2 

Fig.3 Fig.4 

(1.11) 

Substituting the expressions z,e into (1.11) , we obtain 

M = Jf’lr (t), J= \ t(cl)&l 
-a 

Finally we rewrite the formulas for the stresses and displacements c: L.8) in the form 

v--2kM’ ‘i’(‘) 
I= -7 

(1.12) 

Using the numerical solution of the boundary value problem (1.10) obtained on an ~~-1023 

computer by the trial-and-error method, we constructed the graphs (1 mm. corresponds to 0.4 
units) for the relative stresses 

2’. When M(t) = const 
uT~ = -2JGiM Ofj with v = 30. a= n/6 (Fig.2). 

and 2a = n/2. we use the particular solution l#=cos2e of (1.9) to 
obtain, from (1.8) and (l.ll), the solution 

(1.13) 

A numerical method of solving this problem for any a and R exists /9/. 
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The case n = 3. We write n= 3 in the relations 11.3)-(1.6). Eq. (1.4) reduces to the 
inhomogeneous, second-order differential equation 

(9" - 39)~ + v+ = A sin (0 -I- Y) (1.14) 

y” = [($” - 3qy + 16$T”3 

where A and y are arbitrary constants and in (1.6) m =4/9. Fig.3 shows graphs of f (t) when 
f. = 0 (the notation is the same as in Fig.1). 

The formulas for the stresses and displacements can be written as follows: 

Go, 50 = fWz [ il cm (0 I_ y) - (4 (1 ;rt: 1) *‘xl (1.13) 

z,* = /Yw-‘7 z= d sin (B -j- IT)- V(i) 
u = -&jr+-+, u = -kfr-%@ 

The differential Eq. (1.14) can be reduced to a cubic equation in ($"-3q)-1. Determining 
the real root of this equation, we obtain a differential equation which, when A =0, reduces 
to a first-order differential equation. However, it is more convenient when a numerical 
solution is required, to reduce it to a system of two first-order equations 

$'=(6~$ls, s' = 18~~'$--4fl3 v&/T (Ll6) 

T =z T, - T_, T, = [(G + Yy)r~’ + ,]“” 
_ 

lo. Let us consider an infinite wedge of angle Za, with a concentrated axial force P(t) 

applied to its vertex. Usinq the conditions oftheproblem, we shall have the following 
b&dary conditions for the system of Eqs.(l.lG): _ 

0=0,~=0;~=a,~=O 

Considering now the equilibrium of a sector of arbitrary 

to be separated from the wedge, we obtain (P = P(t)) 

P ,.a%~~~~*so-~~,sin81'.d0_o 

radius r (Fig.4) which we imagine 

After substituting the stress components into (1.181, we obtain 

(1.17) 

(1.18) 

Finally, the formulas for the stresses and displacements will have the form 

(1.19) 

(1.20) 

Using the numerical solution of the boundary value problem (1.16)-(1.17), we have 

constructed the graphs of sTj = -JrIPo,i for v=60 (Fig.4). The solid lines correspond to 

the case CL= ni2 (I mm. corresponds to 4 units) and the dashed lines to a== n/B (1 mm. 

corresponds to 0.1 units). 
Z". Let the infinite wedqe be bent by a concentrated force P(t) applied to its vertex 

in a direction perpendicular to the axis. In this antisytmnetric case the boundary values for 

the system 11.161 are 
e = 0, s = 0; e=a, *=o (l.2i) 

Considering now the equilibrium of a sector of arbitrary radius r which we imagine to be 

separated from the wedge, we obtain 

Substituting the stress components into 11.221, we obtain a relation connecting P(t) with 

f(l) according to (1.191, while the formulas for the stresses will retain the form (1.20) 

and 
u: 

Jz4 Tzin6d6T2v *co~i)dO 
E d3 * 5 

10 

while the functions Q(O) and s(B) will be found from the boundary value problem (1.161, (1.21). 

The static problem of the compression of a wedge was solved for the general case of power- 

type hardening in /9, lo/. The dynamic problems for incompressible plastic media under the 

conditions of plane deformation were studied in /11, 12/. 
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2. Axisymmetric deformation. We shall write the relations of dynamic deformation 
of the medium in question, in spherical coordinates, as follows: 

the equationsofmotion 

~+~~+~(20..--orr--o,+TrOCtge)=P~ (2.1) 

~,-f~+~[(oa--o,)ctge+3r,,]‘D~ 

Z_$L++* +f(2rooctge+3a,.,)=p~ 

the relations connecting the deformation and stress intensities and the relations connect- 
ing the deformation, displacement and stress components 

ErJ = kuOn 

e0= 1/ T [(er - eO)* + (e0 - Q2 + (e, - et)a + 

6h:O + vip + &I"~ 

(2.2) 

(2.3) 

the stress and displacement components 

ur = uO - 2xfw+ [(2h - 3) qi + hi, ctg e] x 
us = oO - 2x (h - 3) flh--hln (q’ - I+ ctg e) x 
ue = H + pk (2 - h)-‘f”r2-& (I#” + I$ ctg e) f 

mh-lfW+.‘n {([y f (q ctg ey + h (3 - h) $1 x)’ + 

w+(wg6)~+~(3---)wmgef 
S(1 -q(g’+gctge)x + 2hn-‘[(2h-3)$‘+ h#ctge]X} 

~,e = xfl’nr-hin[$” + (I# ctg 0)' + h (3 - h) $1 x 
T,,~ = - xhfl’nr-h%pX sin 0, ~0% = 9cfl!nr-h/nrp’X sin e 
x = {w + (q ctg ey + h (3 - a) ~12 + 4 (~2 - 3h + 3) ($12 + 

$” ctg2 0) + 4 (h2 - 3)$‘g ctg 0 + (cp'" + A%$) sin2 e}(l-n)/2n 
u = xkfrl-a (9’ + I& ctg e), u = xk (A - 3) fr’-b$ ’ 
w = xkfP*cp sin 8, k # 0 

Here cp = ~(8) is an arbitrary function, and the remaining notation is unchanged. 
Expressions (2.3) represent a solution of the system (2.1)-(2.21, provided that q(O) and 

v (0) satisfy the system of equations 

(w + (+ ctg e)’ + h (3 - A) $1 x)" + (kk," + (11 ctg 6)' + 
h (3 - h) $1 x ctg e)’ + h-1 (3 - h-1) [*fl + (q ctg e)’ + 
h (3 - h) +I x + 2x1 (1(2h - 3) $8 + hq ctg 81 ~0’ + 
2hn-1 (h - 3) (9’ - Q ctg e) x ctg e + 6 (1 - h) I(+’ + 

9 ctg e)xi’ + 
h-1 (h - 2)-l I+” + (q ctg e)’ + (h - 2) (h - 3) $1 = 0 

(cp’x sin3 e)’ + h (?d - 3) ‘px sin3 8 + vq sin3 0 = 0 

(2.4) 

When studying the torsion of a solid of revolution, we should write in (2.31, (2.4) II,(O) = 
H (t) = 0. 

When h = 0, the system of Eqs. (2.1), (2.2) admits of the solution (g = g(t) is an 
arbitrary function) 

u,= ug +X 1KTg1’f1cos2e, u,, = (JO - x lCFi_gl'nsin"O 

ue = H - x (I -312) g”“ cos 26 - x (1’3148) pkg’:P (1 - 
3 cosz e) 

s,fl = - x(vF/Z)g”fl sin 20, Try = ~0" = 10 = 0 

u = --x (1' 3124) g (1 - 3 cos? 6), u = --x (1/g/16) gr sin 20 

(2.5) 
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The case n = 2. Putting n = 2 in relations (2.3), (2.4) and writing q~ (0) = H (t) = 0, 
we obtain the following expressions for the stress and displacement components: 

clr = cr@ - 2Xf’W2 (5Q’ + 4Q ctg e) x 
Go = 00 - 2wf1jv-2 (I)’ -I) ctg 0) X 

(T" = 1/,~f”~r-2{([~n + (I$ ctg 0)’ - 4$1 x)’ + 
I*” + (q ctg ey - 4+1 x ctg e + 2 (q - 9 ctg e) x + 

Y w + v ctg e)) 

(2.6) 

rre = xfw2 by + (* ctg e)’ - 4+1 x 
15 = {[IjJ” + ($ ctg e)’ - 4qP + 28 (IQ’” + $2 ctg2 e) + 

52+‘1& ctg O}-"4 
u = xkf@ (9 + Q ctg e), v = xkfr-“v 

The function f = f(t) is found according to the quadrature (1.6) with m =S/a, and II, (0) 
satisfies the equation 

(r~ + (II, ctg e)’ - 4+1 xy + (19” + (+ ctg e)’ - 

4~ x ctg e)’ + 
2 19” + (+ ctg e)’ - 4q1 x + 2 I(+’ - q ctg e) xl’ + 
4 (9’ - 9 ctg e) x ctg e + v,~ I*” + (9 ctg e)’ + 2*1 =o 

(2.7) 

lo. Let us consider an infinite cone of angle 2a, compressed by an axial force P(t). 
Eq.(2.7) reduces to a system of four first-order differential equations 

The boundary 

To establish 

conditions for system (2.8) are 

e=O,T=+=O;e=a,a=~=O (2.9) 
a relation connecting P(t) and f(t),wewill consider a cone-like body 

bounded by an arbitrary spherical surface of radius r, with centre at the vertex (Fig.51, 
which we imagine to be separated from the rest. We have 

p +2n[(o,cose - T,~ sine) r2 sin e de = o (2.10) 
0 

q== s - q ctg 8, sI = 4q+ zw 
z’ = u - ys - z ctg 0 - 2o-l (s - 211, ctg e) 
d = -2% - 2v+ - 4w-1 (s - 2~ ctg e) ctg e 
w = (f.Va) p + 1~4 + 16 (79 - * ctg e + $2 Ctg e)llqls~ 

(2.8) 

Fig.5 Fig.6 

Substituting into (2.10) expressions for U, and ~,o written in terms of $,s,r and IJ, 

we obtain 

P = nJf’f2 

J-~(a)=~[o-_(5s--l/iotge)]cas0sinede-29rsinse~e 
0 

(2.11) 
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Finally, we obtain the following expressions for the stresses and displacements: 

P 
U,=- - &-$(5s-l&tge)], 2nlrl [ 

ae=- ;;;;: (2.12) 

Q+_-L- @““- 
a&l?@ I 

-&-2~ctge)], T*=-+(e) 

Pa s(B) 
u=-k---;J, P’ Ipm 

x=P v=-k-;rsiir-p- 

Using the numerical solution of the boundary value problem (2.81, (2.9), we give in Fig.5 
graphs of 0~~=---2sJ~IPs~j for v-30. The solid lines correspond to a= sf2 (1 mm corresponds 
to 10 units) and the dashed lines to a=~/6 (1 mm corresponds to 0.5 units). 

2O. Let a concentrated force P(t) be applied at the point of an infinite body regarded 
as the origin of coordinates, along the axis e=o. In this case the system of Eqs.(2.8) 
should be integrated using the boundary conditions 0=0,x, ~=\li=O. The condition of equilibrium 
of a mentally separated sphere of arbitrary radius r and the centre situated at the origin of 
coordinates is written in the form (2.10) with a=~. The formulas for the stresses and dis- 
placements and the dependence of P on f(t), are found according to (2.11), (2,12),with J=J(n). 

The case n=.?+ When n=3, the formulas for the stresses and displacements (2.3) with- 
out torsional deformations. can be written in the form 

u,r or) = - pa,-1 [(L)’ .+ $ct@3-(9rtr:3) +w], f&p = (Te (2.13) 

T,e z _ +.-’ .&. , o 5= (s’s + lZs*)‘h, u =L - kf -$ , v = 0 

where s satisfies the equation 

(234) 

and f(t) is determined according to (1.6) with m = p/s. 
Let us consider a half-space whose surface is acted upon by the loads (Fiq.6) 

O=-$; cr%=-p+-cos& rr%==p+sinfi, p=+f'f*(t) (Mlj) 

where a and @ are given parameters. Introducing the notation s' = 'cc% we obtain, from the 
expression for o in 12.13), a cubic equation in *is'. Ifaving determined the real root, we 
can reduce Eq.(2.14) to a system of.three first-order ordinary differential equations 

s' = 6ts/Q, z' = 0 + YS - 7ctge + 9, u' = -22 

Q=R+--Q_, a, = [(P --i_ 81sZ)'/s * 9s]'/a 

with boundary conditions 

0 = 0, z = 0; % = ~12, c = cos fi, 7 = -sin B 

The formulas for the stresses and displacements can finally be written in the form 

s, = -p (u/r) (a - Q), cr% = -p (ak) d @), a, = ue 

Z,% = --p (a/r) z @), u/a = kp3 (a/rfSs (8), v = 0 

When there are no tangential loads on the surface 8 = n/2, we should write p = 0. 

3. The static case (v=O). Let us consider the static deformation of bodies with 
power;zype hardening so = kagn. 

. Let a uniformly distributed pressure p be applied to one of the infinite edges of a 
quarter-plane. Putting in (1.7) g(t) = const M (t) = con& and using the boundary conditions 
c%= --p when 8 =O and CT% = 0 when 6 = n/Z, we finally obtain 

s,, @% = -.--'la~ (1 f eos 28), z,% f --Vap sin 29 

u = ‘i,k (V$p)” PCOS 26 - Nsin (8 + 6) 

v = -ll,k ('/2p)*risin 28 - M cos (0 -I- 6) 

A numerical method exists /9/ for solving this problem for any value of the wedge angle. 
2O. Let us consider an infinite cone with angle 2a, compressed by an axial force P 

applied at its vertex (generalization of the Boussinesq solution to the case of an incompressible 
material). Assuming that Y = 0, h = 2s and 9 (6)= 0, we can reduce Eq.(2.4) to a system of 
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four first-order differential equations 

+' = s -11) ctg 8,s' = 2n (2n - 3)lj + TO 

z’ = u - z ctg e - 'I$, 0 = -27 - s ctg 0 s = 4 (2n - 3) co-1 (s - 2?$ ctg e) 

(3.1) 

and o is found from the power equation 

o?",("-l) _.._-$2 - 4 (4n2 - 6n + 3) s2 + 4 (21~ - 3)’ (S - q ctg 0) 9 ctg 0 = 0 

Using the corresponding expressions for the stresses and displacements (2.3), we arrive 

at the boundary conditions for system (3.1) 

e=o,z=q=o; e=a,~=z=o 
When Y = 0, Eq.(2.10) yields 

P=nJfl:“, J=I(a,n)=j[o- SS- 

0 

a 

+(2, - qqpctge] 00sesinede-2 Tsin*t3dB 
s 
0 

The formulas for the stresses and displacements are 

P 
‘J,=-7 A! [ 

U- -&$s-+(2n-qgctge] (3.2) 

-f_ u (e), @I-- “n,ra 
IJ” rz - &d-S)7 

P" s (0) uz-k-- ,n,= r?ri--l ’ 
~=-(2n--3)k~~ 

The results of a numerical solution for n= 2, cc= n/6, v =0 are shown in Fig.5 by the 

dot-dash lines (1 mm corresponds to 2 units). 

When x=1, we put $=-sine and o=z=O to obtain, from (3.2), the corresponding formulas 
for the linearly elastic material. 

The stress state of a half-space with power-type hardening of the material caused by the 

application of a concentrated normal force, was considered in /13/ where the author had 

succeeded in determining the displacement of a point on the surface ofthehalf-space, apart 

from a constant factor. 

3O. Let a concentrated force P be applied at the point of an infinite body corresponding 

totheorigin of coordinates along the axis e=o. In this case the system of Eqs.(3.1) 
should be integrated with the boundary conditions O=O, n,~=$=0. The formulas for the stresses 

and displacements are given by (3.2), where we must assume that J = J (n, ?I). 

40. Let us consider a cone whose side surface is acteduponby uniformly distributed normal 

and tangential forces. Using (2.5) and satisfying the boundary conditions ae=--p, T,.~=Q? we 

obtain, when t3 = a. 

1~~. oe = --p - q(cos 2a + cos 2O)/sin 2a 

oiP = --p j- * tg OL, TrR = q sin %/sin 2a 

Ifa u=&[+$' '(3;$;,-" ( “=-16k (~)“d$?$ 

5O. Let distributed loads be applied at the surface O=n/2 of the half-space (Fig.6) 
according to the law 

otl = --p (4/r)"' cos 0, 7+B = p (a/r)" sin B, O<m<E 

The case m= 1 is shown in Fig.6. 
Assuming that v=O,h= mn and 'p (0) = 0, we reduce Eq.(2.4) to the following system of 

four first-order differential equtions: 

G' = S -Q ctg 8, s’ = m,* (ml - 3) 1p + ro (3.3) 
z' = 0 - T ctg 0 - 2o-‘([m (Zmn - 3) -+ 3 (1 - mn)] s - 

m (mn - 3)Q ctg 0) 

0' = m (m - 3)r - Zmo-' (mn - 3)(s - 2* ctg 0) ctg 8 

where w is given by the power equation 

,?ili(H) _ &P - 4 (mzn* - 3 mn + 3)s 2 _ 4 (mn - 3)~(~ - + ctg 8) q ctg e = 0 

The boundary conditions are 

0 = 0, r = * = 0; e = d2, 0 = T~L ~0s p, z = --sin fi 
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The formulas for the stresses and displacements are 

When only normal forces are applied to the surface 9=%/l, we must write 

Just as in /14/, we can consider theproblem of the dynamic deformation of 

p = 0. 

component bodies 
in contact with each other through the coordinate surfaces, with different deformation moduli 

k and the same degree of hardening R. 

The author thanks S.S. Grigoryan for refereeing the paper and for the comments made, and 

N.B. Safaryan for help with the numerical computations. 
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